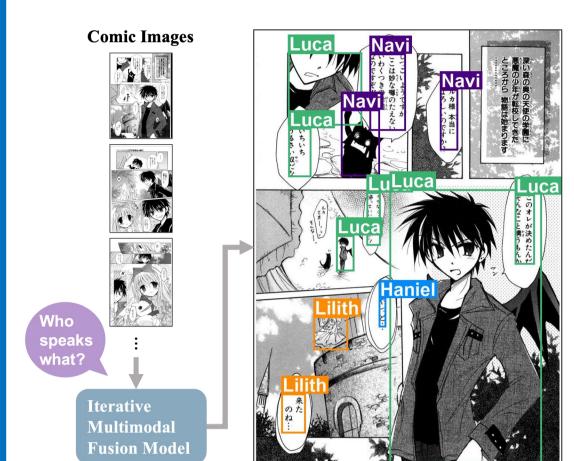
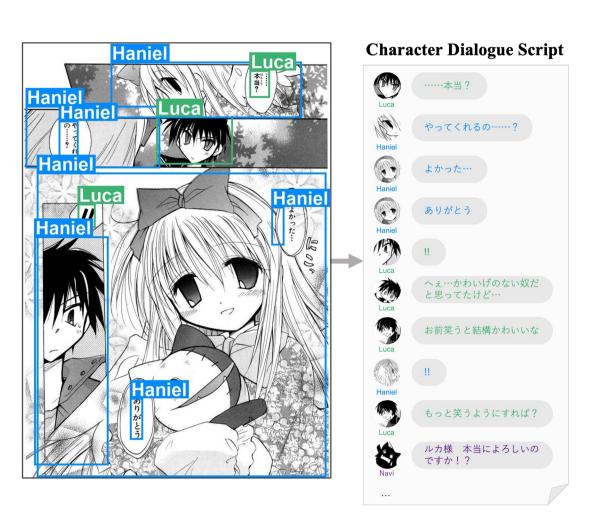
Zero-Shot Character Identification and Speaker Prediction in Comics via Iterative Multimodal Fusion

Yingxuan Li¹, Ryota Hinami², Kiyoharu Aizawa¹, Yusuke Matsui¹ ¹ The University of Tokyo, ² Mantra Inc.

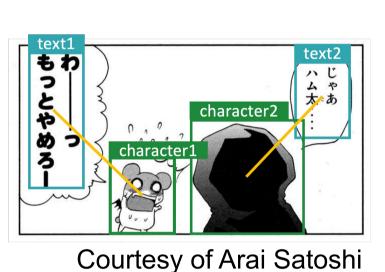



Introduction

Novel task

 Identify characters and predict speakers of unseen comics only from images

Courtesy of Kiriga Yuki

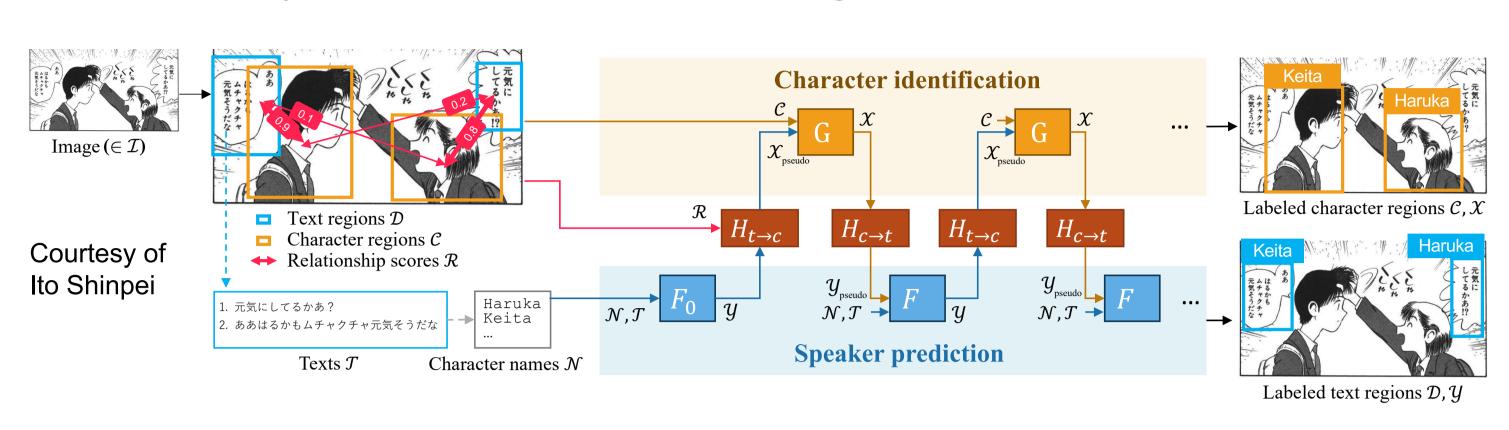

Applications

- Automatic character assignment for audiobooks
- Automatic translation according to characters' personalities
- Inference of character relationships and stories

Motivation

Limitations of previous studies

- Speaker prediction: Focused only on predicting the correspondence [1]
- Character identification: Required annotations and specific classifiers for each comic title [2]


Research focus

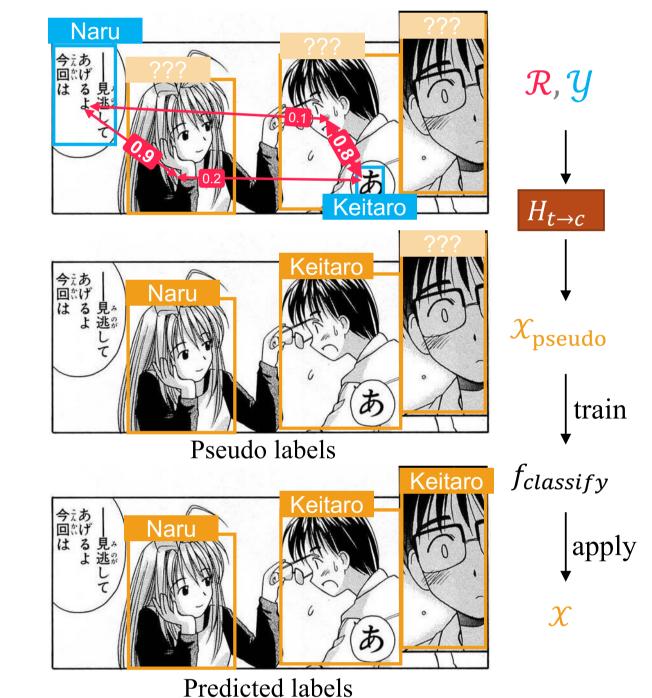
- Predict character names for both text and character regions
- Tackle zero-shot tasks without requiring any annotations
- Enhance real-world applicability

Approach

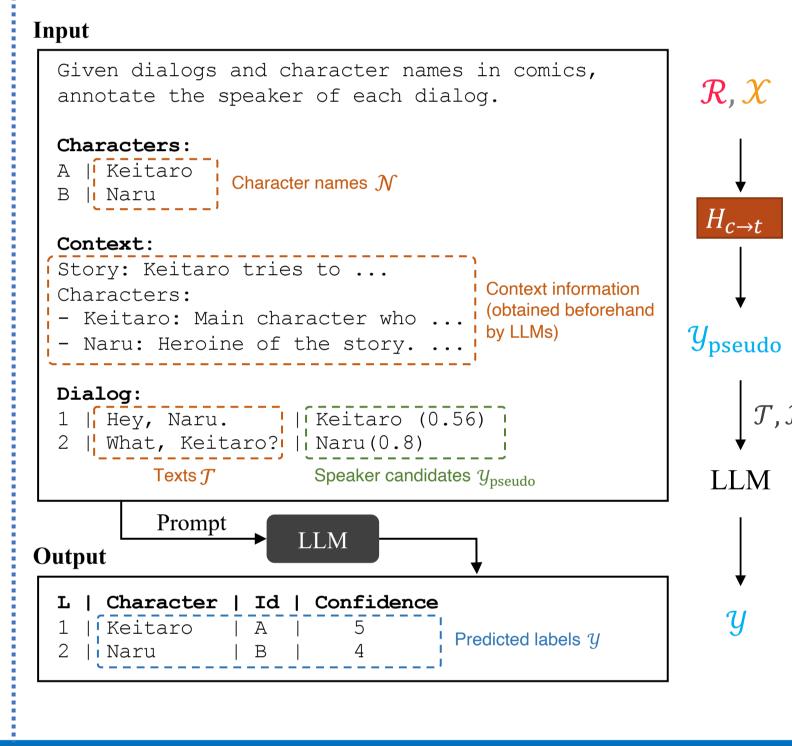
Iterative multimodal fusion

- Leverage large language models (LLMs)
- Merge text-based LLM predictions with image-based classifiers
- Alternately refine each module using results from the other

Data preprocessing ---


- Object detection: $\mathcal{I} \mapsto \mathcal{C}$, \mathcal{D}
- Relationship prediction: \mathcal{I} , \mathcal{C} , $\mathcal{D} \mapsto \mathcal{R}$
- ullet OCR: \mathcal{I} , $\mathcal{D} \mapsto \mathcal{T}$
- Character name extraction: $\mathcal{T} \mapsto \mathcal{N}$

Main pipeline: Three modules -----


- Speaker prediction module (F)
- Character identification module (G)
- Label propagation module $(H_{t\to c}, H_{c\to t})$

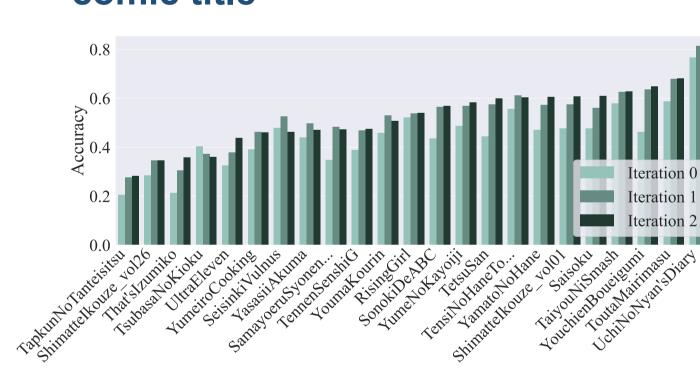
Initial speaker prediction: $\mathcal{T}, \mathcal{N} \longrightarrow F_0 \longrightarrow \mathcal{Y}$

Iterative character identification

Iterative speaker prediction

Experiments

Main results


- Dataset
 - Annotations: Manga109 [3] + Manga109 Dialog [1]
 - Test set: 23 volumes that were unseen in the training set
- Task settings
 - Set object regions $(\mathcal{C}, \mathcal{D})$, texts (\mathcal{T}) , and the name list (\mathcal{N}) to known
- Baselines
 - Character identification: Clustering + mapping clusters to ground truth*
 - Speaker prediction: Previous approaches + character identification results
- Data division
 - Divided the test set into Easy and Hard by the difficulty of relationship prediction
 - *Easy*: 11 volumes with an accuracy of relationship prediction over 75%

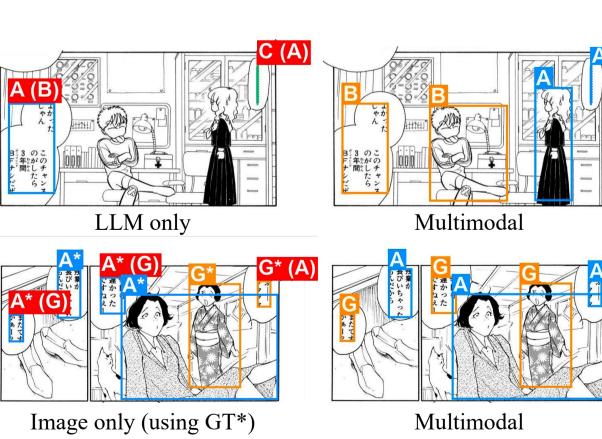
	ter text	img	Speaker pred.		Character id.			
iter			Easy	Hard	Total	Easy	Hard	Total
-		\checkmark	34.5*	31.8*	33.1*	37.0*	36.7*	36.8*
-		\checkmark	36.7*	34.8*	35.7*	37.0*	36.7*	36.8*
0	\checkmark		41.8	45.1	43.6	-	-	-
1	\checkmark	\checkmark	51.0	51.2	51.1	45.8	39.6	42.4
2	\checkmark	\checkmark	52.4	51.3	51.8	48.5	40.3	44.0
3	\checkmark	\checkmark	53.5	49.8	51.6	48.9	37.7	42.8
	- - 0 1 2	- - 0	-	iter text img Easy - \checkmark 34.5* - \checkmark 36.7* 0 \checkmark 41.8 1 \checkmark \checkmark 51.0 2 \checkmark \checkmark 52.4	iter text img $Easy\ Hard$ - \checkmark 34.5* 31.8* - \checkmark 36.7* 34.8* 0 \checkmark 41.8 45.1 1 \checkmark \checkmark 51.0 51.2 2 \checkmark \checkmark 52.4 51.3	iter text img $Easy\ Hard\ Total$ - \checkmark 34.5* 31.8* 33.1* - \checkmark 36.7* 34.8* 35.7* 0 \checkmark 41.8 45.1 43.6 1 \checkmark \checkmark 51.0 51.2 51.1 2 \checkmark 52.4 51.3 51.8	iter text img $Easy$	iter text img $Easy Hard Total Easy Hard$ - \checkmark 34.5* 31.8* 33.1* 37.0* 36.7* - \checkmark 36.7* 34.8* 35.7* 37.0* 36.7* 0 \checkmark 41.8 45.1 43.6 1 \checkmark \checkmark 51.0 51.2 51.1 45.8 39.6 2 \checkmark \checkmark 52.4 51.3 51.8 48.5 40.3

(a) Results on different test sets. * indicates that the baseline method used the ground truth to map
clusters into labels, as explained in the experimental setup.

	iter	Speaker Charac		
		pred.	id.	
Baseline				
K-means+GT	-	42.0*	36.8*	
Proposed				
LLM only	0	43.6	-	
Multimodal	1	60.2	53.9	
	2	63.4	55.5	
	3	63.8	56.6	

 Speaker prediction accuracy of each comic title

Zero-shot results


	iter	Speaker pred.	Character id.
LLM only	0	34.1	-
Multimodal	1	37.7	35.6
	2	38.7	35.0
	3	37.9	33.8
Upper bound	-1	67.3	63.9

Correct prediction: The region was detected with an IoU > 0.5 and was correctly labeled

Upper bound: Accuracy under ideal conditions (when all labels of extracted names are perfectly predicted)

Qualitative results

Unimodal vs. Multimodal

Iteration 1 (0/3 & 0/3)

One-step vs. Iterative

Courtesy of Tashiro Kimu, Hikochi Sakuya, Tenya

Iteration 3 (3/3 & 2/3)

Reference

- [1] Manga109Dialog: A large-scale dialogue dataset for comics speaker detection. Li et al. ICME 2024.
- [2] Cartoon face recognition: A benchmark dataset. Zheng et al. ACMMM 2020.
- [3] Building a manga dataset "manga109" with annotations for multimedia applications. Aizawa et al. IEEE MultiMedia 2020.

Conclusion

New tasks

- First to integrate the tasks of character identification and speaker prediction in comics
- First to tackle zero-shot tasks with direct applications in real-world scenarios

Iterative multimodal fusion

- Revealing the significant potential of LLMs for comics analysis
- First approach to use both text and image information for character identification and speaker prediction

Explore our project page for more details!

Paper on OpenReview

Project page